

Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 17/0183 of 22/11/2021

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	Rawlplug R-XPT Throughbolts
Product family to which the construction product belongs	Product area code: 33 Torque controlled expansion anchor for use in uncracked concrete
Manufacturer	Rawlplug S.A. Ul. Kwidzyńska 6 51-416 Wrocław Poland
Manufacturing plant	Manufacturing Plant No 2
This European Technical Assessment contains	9 pages including 6 Annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601 Mechanical fasteners for use in concrete
This version replaces	ETA 17/0183 issued on 20/03/2017

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such

1. Technical description of the product

The Rawlplug R-XPT Throughbolts are through-fixing torque-controlled expansion anchors in sizes of M8, M10, M12, M16 and M20. Each type comprises a nut, bolt, washer and expansion sleeve. The anchors are made from zinc-plated and passivated steel.

The anchor is installed in a drilled hole; tightening the nut draws the cone into the sleeve. The expansion of this sleeve applies the anchorage.

The installed anchor is shown in Annex 1.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 and C 2
Displacement	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

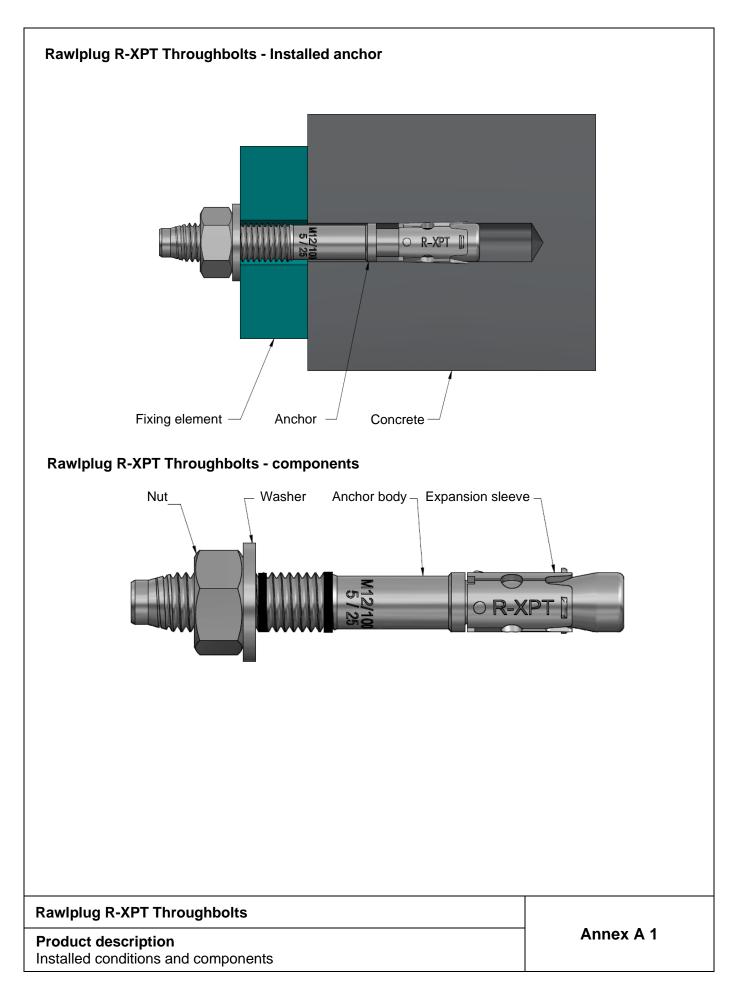
Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	No performance assessed

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/463/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.


Issued in Prague on 22.11.2021

By

Ing. Mária Schaan

Head of the Technical Assessment Body

¹ Official Journal of the European Communities L 198/31 25.7.1997

Component	Material	Coating
Anchor body	Steel grade C17C, EN 10263-2 Rupture elongation A₅ > 8%	
Expansion sleeve	Steel grade DC03, EN 10139 M8-M12 C590 M16-M20 C490	Electroplated ≥ 5 µm and clear chromate film Cr3
Hexagonal nut	according DIN 934	
Washer according DIN 125A or DIN 9021		

Table A2 – Marking

										M8											
Bolt length	[mm]	60	6	65	75		80	85		90	Ο,	95	100	10	5 11	5	120	14	40	150	160
Head marking		В		b	С		d	D		е		E	F	f	G	ì	Н	ł	<	L	М
t _{fix,std} /t _{fix,red}		-/10	-/	/15	10/2	25	15/30	20/3	5 2	25/40	30)/45	35/5	0 40/5	55 50/	65 5	5/70	75	/90 8	35/100	95/110
										M10											
Bolt length																					
Head marking		В		D)	(k	е		E		Ģ	3	Н			K		L	-	Р
t _{fix,std} /t _{fix,red}		-/5		10/2	20	15	/25	20/30)	25/3	5	45/	/55	50/60	60/	70	70/8	30	80/	90 1	10/120
										M12											
Bolt length	[mm]	80 10	0 1	105	110	11	5 120) 125	13	35 14	0	150	160	180	200	220	24	0	250	260	280
Head marking		DF		f	G	g	h	Н	,	JK		L	М	Р	R	S	Т	-	U	V	Х
t _{fix,std} /t _{fix,red}		-/5 5/2	25 1	0/30	15/35	20/4	0 25/4	5 30/50	40	60 45/	35 5	55/75	65/85	85/105	105/125	125/14	5 145/	165 1	55/175	5 165/18	5 185/205
										M16											
Bolt length	[mm]	100		105	1	25	130) 1	40	15	0	16	60	180	200	22	20	250)	280	300
Head marking		F		f		Η	J		K	L		N	Λ	Р	R	S	3	U		Х	Y
t _{fix,std} /t _{fix,red}		-/5		-/10	5/	25	10/3	0 20)/40	30/	50	40/	60	60/80	80/100	100/	/1201	30/1	5016	50/180	180/200
										M20											
Bolt length	[mm]	12	25		14	10		160		1	65		1	80	2	00		25	0		300
Head marking		ŀ	1		ł	(Μ			m			Р	' F		U				Y
t _{fix,std} /t _{fix,red}		-/	5		-/2	20		20/40		25	5/45	5	4()/60	60	/80	1	10/	130	16	0/180

Rawlplug R-XPT Throughbolts

Product description Materials Marking

Annex A 2

Specifications of intended use

Anchorages subject to:

• Static and quasi-static load.

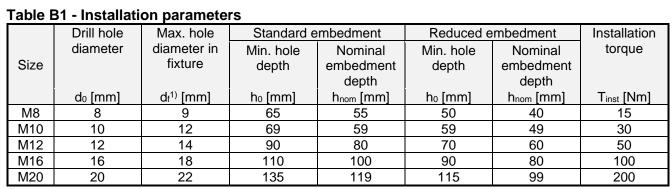
Base materials

- Uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Use conditions (Environmental conditions)

• Structures subject to dry internal conditions.

Design:

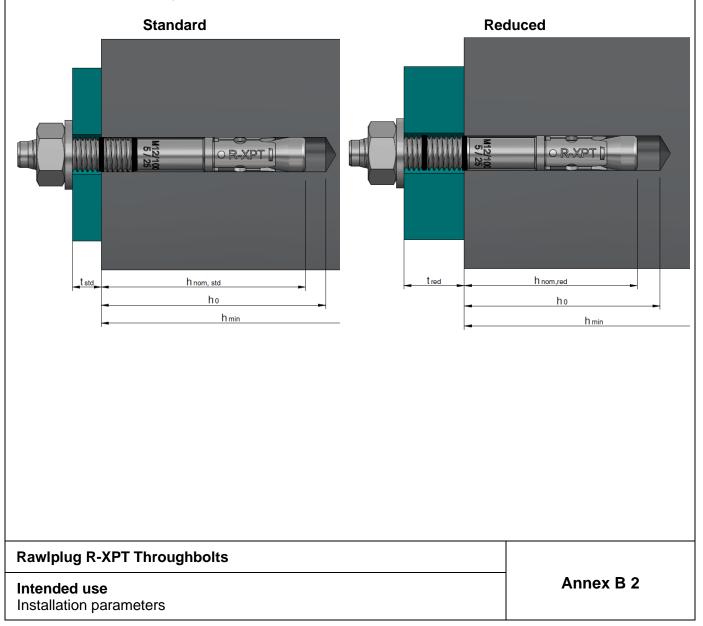

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

Rawlplug R-XPT Throughbolts

Intended use Specifications Annex B 1



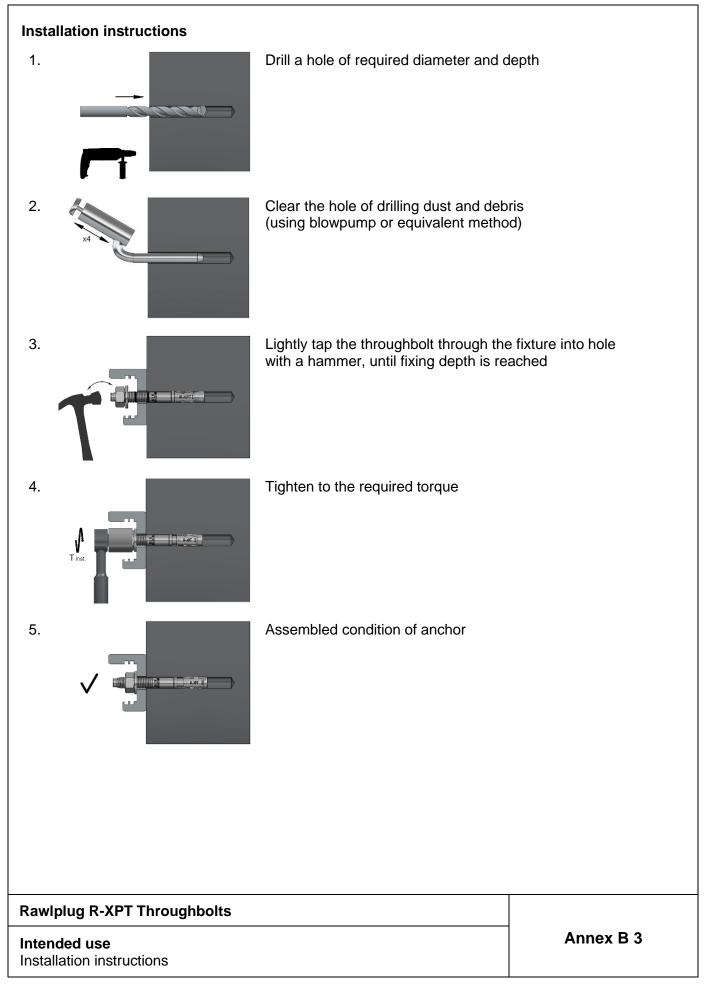

¹⁾ For the design of bigger clearance holes in the fixture see EN 1992-4:2018

Table B2 - Installation parameters – Minimum spacing and edge distance

Size				Μ	8	M	10	M	12	M	16	M	20
				Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std	Red	Std
Minimum thickness of co	ncrete member h	າ _{min}	[mm]	100	100	100	100	100	136	130	170	158	198
Minimum spacing	S	Smin	[mm]	45	50	55	55	100	75	100	90	125	140
	for edge distance of	2 ≥	[mm]	50	55	65	65	100	90	100	105	125	160
Minimum edge distance	С	min	[mm]	40	40	65	50	100	65	100	80	125	100
	for spacing s	s≥	[mm]	100	100	55	90	100	100	100	150	125	200

¹⁾ Use restricted to anchoring statically indeterminate structural components

Page 7 of 9 ETA 17/0183 issued on 22/11/2021 and replacing ETA 17/0183 issued on 20/03/2017

Table C1 –	Characteristic	resistance	under	tension	load

Size				N	18	M	10	M	12	M	16	M	20
				Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std	Red	Std
Steel failure													
Characteristic resistanc	e	N _{Rk,s}	[kN]	17	' ,5	27	<i>'</i> ,6	40),0	71	,0	10	8,4
Partial safety factor		γMs	[-]	1	,5	1,	,5	1,	,5	1	,5	1	,5
Pull-out failure													
Characteristic resistance i	in uncracked concrete C20/25	N _{Rk,p}	[kN]	9	12	9	15	16	24	28	40	36	44
Installation safety factor		γinst	[-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Increasing factor													
	C30/3	7		1,23	1,16	1,23	1,23	1,21	1,23	1,23	1,23	1,23	1,23
Uncracked concrete	C40/5) ψc	[-]	1,43	1,28	1,43	1,43	1,39	1,43	1,43	1,43	1,43	1,43
	C50/6)		1,58	1,40	1,58	1,58	1,52	1,58	1,58	1,58	1,58	1,58
Concrete cone and sp	litting failure												
Effective anchorage dep	oth	h _{ef}	[mm]	32	47	39	49	48	68	65	85	79	99
Factor for concrete cone f	ailure for uncracked concrete	k _{ucr,N}	[-]					11	,0				
Installation safety factor		γinst	[-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Speeing	Concrete cone failure	Scr,N	[mm]	96	141	117	147	144	204	195	255	237	297
Spacing	Splitting failure	Scr,sp	[mm]	160	240	200	260	250	370	360	430	410	530
Edgo distance	Concrete cone failure	Ccr,N	[mm]	48	71	59	74	72	102	98	128	119	149
Edge distance	Splitting failure	Ccr,sp	[mm]	80	120	100	130	125	185	180	215	205	265

¹⁾ Use restricted to anchoring statically indeterminate structural components

Table C2 – Displacement under tension load

Size			M8	M	10	M	12	М	16	M	20
		Red	¹⁾ Std	Red ¹⁾	Std	Red	Std	Red	Std	Red	Std
Tension load	N [kl	J] 4,2	7,1	4,3	7,1	7,8	11,4	12,3	18,4	16,4	21,0
Displacement	δ _{N0} [mi	n] 0,3		0,3	0,3	0,3	0,2	0,2	0,2	0,3	0,3
	δ _{N∞} [mi	n] 1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7

¹⁾ Use restricted to anchoring statically indeterminate structural components

Rawlplug R-XPT Throughbolts

Performances Characteristic resistance under tension load Displacement under tension load

Table C3 – Characteristic resistance under shear load

Steel failure without lever arm												
Size			N	18	M10		M1	12	M	16	M	20
			Red ¹⁾	Std	Red ¹⁾ St	d R	Red	Std	Red	Std	Red	Std
Characteristic resistance	V ⁰ Rk,s	[kN]	11	,0	17,4		25	,3	47	' ,1	73	3,5
Ductility factor	k 7	[-]		1	1		1			1		1
Partial safety factor	γMs	[-]	1,	25	1,25		1,2	25	1,	25	1,	25
Steel failure with lever arm												
Characteristic resistance	M ⁰ Rk,s	[Nm]	2	2,	45		79	9	20	00	3	92
Partial safety factor	γMs	[-]	1,:	25	1,25		1,2	25	1,	25	1,	25
Concrete pry-out failure												
Factor	k ₈	[-]	1,0	1,0	1,0 1,	0 1	1,0	2,0	2,0	2,0	2,0	2,0
Installation safety factor	γinst	[-]	1,0	1,0	1,0 1,	0 1	1,0	1,0	1,0	1,0	1,0	1,0
Concrete edge failure												
Effective length of anchor	lf	[mm]	32	47	39 49) 4	48	68	65	85	79	99
Anchor diameter	d _{nom}	[mm]	8	3	10		12		16		2	20
Installation safety factor	γinst	[-]	1,0	1,0	1,0 1,	0 1	1,0	1,0	1,0	1,0	1,0	1,0
¹⁾ Use restricted to anchoring statically in	determinate struct	tural c	ompo	nents								

Table C4 – Displacement under shear load

Size				8	M	10	M	12	M	16	M20	
			Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std	Red	Std
Shear load	V	[kN]	6,3	6,3	9,9	9,9	14,5	14,5	26,9	26,9	42,0	42,0
Displacement	δνο	[mm]	2,8	2,8	2,9	2,9	3,8	3,8	4,7	4,7	4,6	4,6
	δv∞	[mm]	4,3	4,3	4,3	4,3	5,7	5,7	7,1	7,1	6,9	6,9

¹⁾ Use restricted to anchoring statically indeterminate structural components

Rawlplug R-XPT Throughbolts

Performances Characteristic resistance under shear load Displacement under shear load